

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0731 of 13 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

This European Technical Assessment

This European Technical Assessment is

No 305/2011, on the basis of

issued in accordance with Regulation (EU)

Manufacturer

contains

Manufacturing plant

Deutsches Institut für Bautechnik

AnkaScrew Xtrem

Mechanical fasteners for use in concrete

Ramset Reid 1 Ramset Drive CHIRNSIDE PARK, VIC 3116 AUSTRALIEN

Plant 1

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | Fax: +493078730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0731 English translation prepared by DIBt

Page 2 of 22 | 13 November 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 13 November 2020

Specific Part

1 Technical description of the product

The concrete screw AnkaScrew Xtrem respectively SPIT TAPCON XTREM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread. Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 4, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements and Durability	See Annex C 7 and Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-20/0731 English translation prepared by DIBt

Page 4 of 22 | 13 November 2020

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Tempel

8.06.01-663/20

Page 6 of European Technical Assessment ETA-20/0731 of 13 November 2020

Page 7 of European Technical Assessment ETA-20/0731 of 13 November 2020

Part	Pro	oduct	name								Mat	eria					
	AnkaScrev										alvani	zed a	acc. t)42:20 (≥5µm	
all types	AnkaScrev	v Xtre	m A4	-	and the local division in which the local division in which the local division in the lo	THE OWNER WATER	the second s				4578		50 II	005.2	010	25411	1
	AnkaScrev	v Xtre	m HCR		and the second second	4529	Define the set										
Part	Pro	oduct	name			Yiel	d str	inal o engtl nm²]	h	Ulti	istic s mate F _{uk} [N,	stre			elor	pture ngatio 5 [%]	
	AnkaScrev	v Xtre	m										-Transferration				
all	AnkaScrev	v Xtre	m A4				560)			70	00			≤ 8		
types	AnkaScrev	v Xtre	m HCR														
Table 2	e 2: Dimensions																
Ancho	r size				6		8			10			12			14	
Nomin	al embedm	ent	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth			[mm] 40 55 45 55 65 55 75 85 65								85	100	75	100	115		
Screv	w length	≤L	[mm]			l			.		500						
Core	diameter	d _K	[mm]	5	,1		7,1			9,1	,1 11,1		_		13,1		
v v absorbigges even	ad outer meter	d _s	[mm]	7	,5		10,6	5		12,6			14,6	5		16,6	
Screw t Screw s Screw	rrew Xtrem size: ength: (54) (32, 0 ¹) trew Xtrem ype: size:	1 1 BC ST	00 BC ST		Si Si N A Si Si Si	crew crew crew Aateri	type: size: lengt ial: crew type: size: lengt	h:		TS№ 10 100 A4]	i i			ds dk		
Ramset™ AnkaScrew™ Xtrem™ Annex A3 Product description Annex A3 Material, Dimensions and markings Annex A3																	

Specification of Intended use

Table 3: Anchorages subject to

AnkaScrew Xtrem screw	w size	6		8			10			12			14		
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loa	ads				ـــــــــــــــــــــــــــــــــــــ		0		. I I			L			
Fire exposure					All	sizes	and	an er	npea	ment	dept	ns			
C1 category - seismic		ok	ok				ok								
C2 category – seismic A4 and HCR: no performance assessed)		x ok					x	х	ok	;	¢	ok)	ĸ	ok

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR. Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Ramset[™] AnkaScrew[™] Xtrem[™]

Intended use Specification Annex B1

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths
- · Cleaning of borehole is not necessary, if using a hollow drill

Ramset[™] AnkaScrew[™] Xtrem[™]

Intended use Specification continuation Annex B2

Page 10 of European Technical Assessment ETA-20/0731 of 13 November 2020

English translation prepared by DIBt

AnkaScrew Xtrem size			6	5		8		6	10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal empeument depth		[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	do	[mm]	e	5		8	10				
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	40		8,45			10,45		
Drill hole depth	h₀≥	[mm]	45	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14		
Installation torque (version with connection thread)						10 20					
Torque impact screw driver	ct screw driver				e accord	ling to n 300	nanufac	turer's	instruct 400	ions	
AnkaScrew Xtrem size				1	2			1	4		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nor}		nom3	h _{nom1}	h _{nor}		nom3	
		[mm]	65	85	in the second	100	75	100	D 1	115	
Nominal drill hole diameter	do	[mm]		1	2			1	4		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14	,50		
Drill hole depth	h₀≥	[mm]	75	95		110	85	110) (125	
Clearance hole diameter	d _f ≤	[mm]		1	6			1	8		
Installation torque (version with connection thread)	[Nm]		6	0			8	0			
Torque impact screw driver	[Nm]	Max	. torqu	e accord	ling to n	nanufac	turer's	instructi	ions		
in que impuer serem unver		frand		65	50			650			

Ramset[™] AnkaScrew[™] Xtrem[™]

Intended use

Installation parameters

Annex B3

AnkaScrew Xtrem size	1		(5		8			10	
Newsia al available due autod	ماندمه	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment d	eptn	[mm]	40	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]				80			90	102
Minimum edge distance	n edge c _{min} [mm] 40						0		50	
Minimum spacing	Smin	[mm]	4	0	40	5	0		50	
AnkaScrew Xtrem size				12	!			14		
Nominal embedment d	onth	h _{nom}	h _{nom1}	h _{nor}	m2 h	nom3	h _{nom1}	h _{nor}	_{n2} ł	າ _{nom3}
Nominal embedment u	epui	[mm]	65	85	5 1	.00	75	10	100	
Minimum thickness of member	h _{min}	[mm]	80	10	1 1	.20	87	119	Ð	138
Minimum edge distance				50		70	50		70	
Minimum spacing					_	70	50		70	

Intended use

Minimum thickness of member, minimum edge distance and minimum spacing

Z98212.20

8.06.01-663/20

Page 15 of European Technical Assessment ETA-20/0731 of 13 November 2020

Table 6: Cha	racteristic val	ues fo	r static	and q	uasi-st	atic loa	ading,	s <mark>izes 6</mark>	-10		ç mə şəndə				
AnkaScrew >	(trem size				5		8			10					
Nominal emb	edment depth		h _{nom} [mm]	h _{nom1} 40	h _{nom2} 55	h _{nom1} 45	h _{nom2} 55	h _{nom3} 65	h _{nom1} 55	h _{nom2} 75	h _{nom3} 85				
Steel failure	for tension and	d shoar													
Characteristic		N _{Rk,s}	[kN]		l,0		27,0		1	45,0					
Partial factor	tension load		[-]	T-	r,0			5		43,0					
Characteristic	shearload	γms,n V ⁰ Rk,s	[kN]	7	1,5 7,0 13,5 17,0 22,5 3										
Partial factor	silear load	V RK,S YMS,V	[-]		,0	10		25	22,5		.,0				
Ductility facto	or	k ₇			,8										
	bending load	M ⁰ _{Rk,s}	[-] [Nm]	10),9		26,0	-		56,0					
Pull-out failu	Ire	_					ter in Arme				i wa waƙa				
Characte-	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾				
ristic tension load C20/25	uncracked	N _{Rk,p}	[kN]		9,0		12,0	16,0	12,0		26,0				
10au C20/25	C25/30	Tuyp	•												
Increasing	C30/37	177	F 1	1,22											
factor for N _{Rk,p}	C40/50	Ψ _c	[kN] 4,0 9,0 7,5 12,0 16,0 12,0 20,0 26,0 1,12 - 1,12 - 1,22 - 1,22 - 1,41 - 1,58 -												
	C50/60						1,	58							
Concrete fail	ure: Splitting fa	ailure, o	concret	e cone	failure	and pr	y-out fa	ailure							
Effective emb	edment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68				
k-factor	cracked 3	k _{cr}	[-]	7,7											
K-IdCLUI	uncracked	kucr	[-]				11	.,0							
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}							
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}							
6 Juni	resistance	N ⁰ _{Rk,sp}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0				
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210				
	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105				
Factor for pry	-out failure	k ₈	[-]			1	,0			2,	,0				
Installation fa	ctor	Yinst	[-]				1	,0							
Concrete ed	ge failure														
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68				
Nominal oute screw	r diameter of	d _{nom}	[mm]	(5		8			10					
¹⁾ N ⁰ _{Rk,c} accordir	ng to EN 1992-4:2	018			1400 (1011)										
Ramse	et™ AnkaScrew	/™ Xtre	m™												
	rmances cteristic values	for sta	tic and	quasi-	static lo	bading,	sizes 6	6-10	A	nnex (21				

Page 16 of European Technical Assessment ETA-20/0731 of 13 November 2020

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Table 7: Cha	rad	cteristic values fo	or static	and c	juasi-sta	atic load	ling, size	es 12-14	4				
AnkaScrew >	Xtro	em size				12			14				
Nominal emb	hod	mont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
	Jeu	ment depth		[mm]	65	85	100	75	100	115			
Steel failure	fo	r tension and shea	ar loadin	g									
Characteristic	c te	nsion load	N _{Rk,s}	[kN]		67,0			94,0				
Partial factor	9		γms,N	[-]			1,	,5					
Characteristic	c sh	near load	V ⁰ _{Rk,s}	[kN]	33,5	42	.,0		56,0				
Partial factor			γ̃Ms,V	[-]	1,25								
Ductility facto	or		k7	[-]			0	,8					
Characteristic	c be	ending load	M ⁰ _{Rk,s}	[Nm]		113,0			185,0	andles since all states			
Pull-out failu	ıre												
Characteristic tension loadcracked $N_{Rk,p}$ [kN]12,0 $\geq N^0_{Rk,c}^{-1}$													
C20/25		uncracked	N _{Rk,p}	[kN]	16,0			≥ N° _{Rk,c} */					
		C25/30					1,	12					
Increasing	racteristic sion load /25 easing or for N _{Rk,p} crete failure: Splitting failu ctive embedment depth ctor ctor ctor		Ψ	[-]			1,	22					
factor for N_{Rk}	,p	C40/50	Ċ	1-1			1,	41					
		C50/60					1,	58					
Concrete fai	lur	e: Splitting failure	, concre	te con	e failure	and pry	-out fail	ure					
Effective emb	bed	ment depth	h _{ef}	[mm]	50	67	80	58	79	92			
k-factor	С	racked	k1=kcr	[-]			7,	,7					
K-Idctor	u	ncracked	k1=kucr	[-]			11	.,0					
Concrete	s	pacing	Scr,N	[mm]		1	3 x	h _{ef}					
cone failure	e	dge distance	C _{cr,N}	[mm]			1,5 :	x h _{ef}					
Splitting	-	esistance	N ⁰ Rk,sp	[kN]	12,0	18,5	24,5	15,0	24,0	30,0			
failure		pacing	Scr,Sp	[mm]	150	210	240	180	240	280			
F	1	dge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140			
Factor for pry			k ₈	[-]	1,0	2,		1,0	2	,0			
Installation fa	acto	pr	Yinst	[-]			1	,0					
Concrete edge failure													
Effective leng	-		$l_f = h_{ef}$	[mm]	50	67	80	58	79	92			
		liameter of screw	d _{nom}	[mm]		12			14				
¹ } N ⁰ _{Rk,c} according to EN 1992-4:2018													
Ramse	t™	AnkaScrew™ Xtr	em™										

Performances

Characteristic values for static and quasi-static loading, sizes 12-14

Page 17 of European Technical Assessment ETA-20/0731 of 13 November 2020

English translation prepared by DIBt

Deutsches Institut für Bautechnik

AnkaScrew Xtrem size			6	5	8	1	0	12	14		
Nominal embedment depth		h _{nom} [mm]	h _{nom1} 40	h _{nom2} 55	h _{nom3} 65	h _{nom1} 55	h _{nom3} 85	h _{nom3} 100	h _{nom3} 115		
Steel failure for tension and she	ar load					10-10-10-10-00-00-00-00-00-00-00-00-00-0					
Characteristic load	N _{Rk,s,eq}	[kN]	14	,0	27,0	45	i,0	67,0	94,0		
Partial factor	γMs,eq	[-]	1,5								
Characteristic load	V _{Rk,s,eq}	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Partial factor	γMs,eq	[-]				1,25	5				
With filling of the annular gap ¹⁾	α _{gap}	[-]				1,0					
Without filling of the annular gap	α_{gap}	[-]		and the second second		0,5					
Pull-out failure											
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,eq}	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ _{Rk,c}	2)		
Concrete cone failure											
Effective embedment depth	h _{ef}	[mm]	31	44	52	43	68	80	92		
Edge distance	C _{cr,N}	[mm]				1,5 x	h _{ef}				
Spacing	Scr,N	[mm]				3 x h	lef				
Installation factor	γinst	[-]				1,0					
Concrete pry-out failure											
Factor for pry-out failure	k ₈	[-]		1,	,0			2,0			
Concrete edge failure											
Effective length in concrete	l _f = h _{ef}	[mm]	31	44	52	43	68	80	92		
Nominal outer diameter of screw	d _{nom}	[mm]	6	6	8	10	10	12	14		
¹⁾ Filling of the annular gap according ²⁾ N ^o _{Rk,c} according to EN 1992-4:2018	to annex	B7, figu	ire 5								

Ramset[™] AnkaScrew[™] Xtrem[™]

Performances Seismic category C1 – Characteristic load values

AnkaScrew Xtrem size			8	10	12	14
		h _{nom}		h _{no}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension						
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0
Partial factor	γMs,eq	[-]		1,!	5	
With filling of the annular gap	α_{gap}	[-]		1,0	0	
Pull-out failure		·				
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load						
Characteristic load	V _{Rk,s,eq}	[kN]	9,9	18,5	31,6	40,7
Partial factor	γMs,eq	[-]		1,2	25	
With filling of the annular gap	α _{gap}	[-]		1,0	0	
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5 x	د h _{ef}	lease and second second
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}	
Installation factor	Yinst	[-]		1,0	0	
Concrete pry-out failure						
Factor for pry-out failure	k ₈	[-]	1,0		2,0	
Concrete edge failure		<u></u>				
Effective length in concrete	l _f = h _{ef}	[mm]	52	68	80	92
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14

Ramset[™] AnkaScrew[™] Xtrem[™]

Performances Seismic category C2 – Characteristic load values with filled annular gap

ł

Deutsches Institut für Bautechnik

AnkaScrew Xtrem size			8	10	12	14	
New test and a descent densel		h _{nom}		h _r	nom3		
Nominal embedment depth		[mm]	65	85	100	115	
Steel failure for tension (hexago	n head t	ype)					
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0	
Partial factor	γ _{Ms,eq}	[-]		1	.,5		
Pull-out failure (hexagon head ty	/pe)						
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5	
Steel failure for shear load (hexa	gon hea	d type)					
Characteristic load	V _{Rk,s,eq}	[kN]	10,3	21,9	24,4	23,3	
Partial factor	γ _{Ms,eq}	[-]		1,	,25		
Without filling of the annular gap	α_{gap}	[-]		C),5		
Steel failure for tension (counter	sunk he	ad type)				
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	6		
Partial factor	γMs,eq	[-]	1	,5	no performa	ance assessed	
Pull-out failure (countersunk hea	ad type)						
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	no performa	ance assessed	
Steel failure for shear load (coun	tersunk	head ty	/pe)				
Characteristic load	V _{Rk,s,eq}	[kN]	3,6	13,7			
Partial factor	γ _{Ms,eq}	[-]	1,	25	no performa	ance assessed	
Without filling of the annular gap	α _{gap}	[-]	0	,5	1		
Concrete cone failure							
Effective embedment depth	h _{ef}	[mm]	52	68	80	92	
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}		
Spacing	S _{cr,N}	[mm]		3)	k h _{ef}		
Installation factor	Yinst	[-]		1	.,0		
Concrete pry-out failure							
Factor for pry-out failure	k ₈	[-]	1,0		2,0		
Concrete edge failure							
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92	
Nominal outer diameter of screw	dnom	[mm]	8	10	12	14	

Ramset[™] AnkaScrew[™] Xtrem[™]

Performances

Seismic category C2 - Characteristic load values without filled annular gap

Table 11: Fir	e expo	osure – cł	naract	eris	tic v	alue	es of	fres	ista	nce							
AnkaScrew >	(trem s	size			6		8			10			12			14	
			h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	edmen	it depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Steel failure	for ter	sion and s	shear	load													
	R30	N _{Rk} ,s,fi30	[kN]	0	,9		2,4			4,4			7,3	2		10,3	
	R60	N _{Rk,s} ,fi60	[kN]	0	,8		1,7			3,3			5,8	2		8,2	
	R90	N _{Rk,s} ,fi90	[kN]	0	,6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s} ,fi120	[kN]		,4		0,7			1,7			3,4			4,8	_
	R30	V _{Rk,s,fi30}	[kN]	-	,9		2,4			4,4			7,3			10,3	
characteristic	R60	V _{Rk,s,fi60}	[kN]		,8		1,7			3,3			5,8			8,2	
Resistance	R90	V _{Rk,s,fi90}	[kN]		,6		1,1	-		2,3			4,2			5,9	
	R120	V _{Rk,s,fi120}	[kN]		,4		0,7			1,7			3,4			4,8	
	R30	M ⁰ _{Rk,s,fi30}	[Nm]		,7		2,4			5,9			12,3			20,4	
	R60	M ⁰ _{Rk,s,fi60}	[Nm]		,6		1,8			4,5			9,7			15,9	-
	R90	M ⁰ Rk,s,fi90	[Nm]		,5		1,2		_	3,0			7,0			11,6	
	R120	M ⁰ Rk,s,fi120	[Nm]	0	,3		0,9			2,3			5,7			9,4	
Pull-out failu	ire																
Characteristic Resistance	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,6
Resistance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,1
Concrete con	ne failu	ire															
Charactoristic	R30-	د N ⁰ Rk,c,fi	[kN]	09	2,2	12	21	34	2,1	48	6.6	3,0	5 6,3	9,9	4,4	9,6	14,0
Characteristic Resistance										_							
	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,/	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11,2
Edge distanc	e																
R30 bis R120		C _{cr} ,fi	[mm]							2	x h _{ef}	÷					
In case of fire	attack	from more	than o	ones	side,	the I	minir	num	edg	e dis	tanc	e sha	all be	≥300)mm		
Spacing										0.00							
R30 bis R120		Scr,fi	[mm]							4	x h _{ef}	F					
Pry-out failure	e																
R30 bis R120		k ₈	[-]			1,	,0			2,	,0	1,0	2	.,0	1,0	2,	0
The anchorag value.	e depth	n has t <mark>o</mark> be	increa	sed	for w	et co	oncre	ete b	y at	least	30 r	nm c	comp	ared	to th	e give	n
Ramse	t™ Anl	kaScrew™	Xtren	n™													
Perfo r Fire ex		es – charac	teristic	c va	lues	of re	esist	ance	e						Ann	ex C(6

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Table 12: Displacements under static and quasi-static tension load												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-	antine services a	10			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ha			h _{nom}			h _{nom1}	r		h _{nom1}	1	h _{nom3}	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nominal embedment depth			[mm]	T	the state of the s		55				85	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		displacement	δ _{NO}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		tension load		[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		displacement		[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		displacement	δ _{N∞}	[mm]	0,4	0,4	0,6 1,0		0,9	0,4	1,2	1,2 1,2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AnkaScrew Xtrem size				12				14				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nominal ambadment death			h _{nom}	h _{nom1}	h _{nom2}	hnc	m3	h _{nom1}	h _{nom}	2 ł	Inom3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.000	65				75	100		115	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	137-204 (set text) 126-252 (set	tension load		[kN]			12	,3	7,6	12,0		15,1	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		displacement	1011				1,	0	0,5	0,8	0,7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	δ _{N∞}			[mm]	1,0	1,2	1,2		0,9	1,2		1,0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tension load	N	[kN]	7,6	13,2	17	,2	10,6	16,9		21,2	
$\delta_{N\infty}$ [mm]1,01,21,20,91,21,0Table 13: Displacements under static and quasi-static shear loadAnkaScrew Xtrem size6810Nominal embedment depth h_{nom1} h_{nom1} h_{nom2} h_{nom2} h_{nom1} h_{nom2} <td rowspan="2">displacement</td> <td>4</td> <td>[mm]</td> <td></td> <td>Statistics of the local division of the loca</td> <td>1,</td> <td>2</td> <td>0,9</td> <td>1,2</td> <td></td> <td>0,8</td>		displacement	4	[mm]		Statistics of the local division of the loca	1,	2	0,9	1,2		0,8	
AnkaScrew Xtrem size6810Nominal embedment depth h_{nom} h_{nom1} h_{nom2} h_{nom3} Nominal embedment depth $\begin{bmatrix} h_{nom1} & 40 & 55 & 45 & 55 & 65 & 55 & 75 & 88 \\ \hline Cracked & shear load & V & [kN]3,38,616,2and uncracked\delta_{V0}[mm]1,552,72,72,7$			δ _{N∞}	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0	
Nominal embedment depth h_{nom} h_{nom1} h_{nom2} h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} Cracked and uncrackedshear loadV[kN] $3,3$ $8,6$ 16,2 δ_{V0} [mm] $1,55$ $2,7$ $2,7$ $2,7$	Table 13: Dis	placements un	der sta	atic and	d quasi-	static s	hear lo	ad					
Interference [mm] 40 55 45 55 65 55 75 88 Cracked shear load V [kN] 3,3 8,6 16,2 16,2 and δ_{V0} [mm] 1,55 2,7 2,7 2,7 uncracked displacement δ_{V0} [mm] 2,1 4,1 4,2	AnkaScrew .	Xtrem size			e	5		8		10			
Interference [mm] 40 55 45 55 65 55 75 8 Cracked and uncracked shear load V [kN] 3,3 8,6 16,2 and uncracked δvo [mm] 1,55 2,7 2,7	Nominal em	pedment denth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	hnorr	h ₁₂ h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
and δ_{V0} [mm] 1,55 2,7 2,7 2,7	Nominar emi	seument depth		[mm]	40	55	45	55	and the second s		75	85	
uncracked displacement S [mm] 2.1 4.1		shear load		[kN]	3,	.3	The second s						
S [mm] 21 41 42			δνο	[mm]	1,!	55	2,7			2,7			
	concrete	displacement	δv∞	[mm]	3,	.1	4,1			4,3			
AnkaScrew Xtrem size 12 14	AnkaScrew Xtrem size				12				14				
Nominal ambadmant danth hnom hnom1 hnom2 hnom3 hnom1 hnom2 hnom	Nominal embedment depth			h _{nom}	h _{nom1}	h _{nom2}	hno	m3	h _{nom1}	hnom		nom3	
[mm] 65 85 100 75 100 115	Nominal empedment depth			[mm]		17		0	75		1		
Cracked shear load V [kN] 20,0 30,5	Cracked	shear load	V	[kN]	20,0)		30,5				
and δ_{V0} [mm] 4,0 3,1	and		δνο	[mm]		4,0 3,1							
uncracked concretedisplacement $\delta_{V\infty}$ [mm]6,04,7	100.00000000000000000000000000000000000	displacement	δν∞	[mm]	6,0				4,7				

Ramset[™] AnkaScrew[™] Xtrem[™]

Performances

Displacements under static and quasi-static loads

Deutsches Institut für Bautechnik

Table 14: Seismic category C2	1) Dicol	a comor	to with fill	ad annula						
according to annex B7, figure		acemer		ed annulai	rgap					
AnkaScrew Xtrem size		8	10	12	14					
Nominal embedment depth			h _{nom3}							
			65 85 100			115				
Displacements under tension I	oads (hexa	gon hea	ad type)			and a second				
Displacement DLS	δ _{N,eq(DLS)}	[mm]	0,66	0,32	0,57	1,16				
Displacement ULS	δ _{N,eq(ULS)}	[mm]	1,74	1,36	2,36	4,39				
Displacements under shear loads (hexagon head type with hole clearance)										
Displacement DLS	δ _{V,eq(DLS)}	[mm]	1,68	2,91	1,88	2,42				
Displacement ULS	δv,eq(ULS)	[mm]	5,19	6,72	5,37	9,27				
Table 15: Seismic category C2 ¹⁾ – Displacements without filled annular gap										
according to annex B7, figure										
AnkaScrew Xtrem size			8	10	12	14				
Nominal embedment depth		h _{nom}		h _n	nom3					
Nominal embedment depth		[mm]	65	85	100	115				
Displacements under tension loads (hexagon head type)										
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16				
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39				
Displacements under tension loads (countersunk head type)										
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	no performance assessed					
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36						
Displacements under shear loads (hexagon head type with hole clearance)										
Displacement DLS	δ _{V,eq(DLS)}	[mm]	4,21	4,71	4,42	5,60				
Displacement ULS	δ _{V,eq(ULS)}	[mm]	7,13	8,83	6,95	12,63				
Displacements under shear loa	ids (<mark>counte</mark>	rsunk h	ead type w	ith hole clea	arance)					
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	2,51	2,98	no performance assessed					
	.,====)	· · · · ·								

¹⁾ A4 and HCR not suitable

Ramset[™] AnkaScrew[™] Xtrem[™]

Performances Displacements under seismic loads